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vector go and use the Gram-Schmidt method to construct the system of 12 - 1 orthonormed vectors. 
Further, we add to these n orthogonal vectors the same number of vectors of opposite direction 
and then use all 2n vectors as initial vectors (the plane case is illustrated in Fig.5). In 
numerical experiments carried out for n y 2 we found no cases in which a set of local maxima 
obtained in this manner did not contain a global maximum. The algorithm converges to a local 
maximum after 2-4 iterations irrespective of the dimensions of the system (up to n--B in 
the experiments), and this is at least twice as fast as in the case of similar methods /2/ of 
searching for the minimum of a functional. 

In conclusion, we note that the proposed algorithm can be applied to non-linear systems 
including the case with a non-convex domain of attainability. 
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ON THE CONSTRUCTION OF GENERAL SOLUTIONS OF THE THEORY OF THE 

ELASTICITY OF INHOMOGENEOUS SOLIDS* 

A.E. PURO 

The elasticity theory equations are decomposed in the case when the shear modulus is a 
function of one Cartesian coordinate while Poisson's ratio is a function of three 
coordinates. Such a separation is possible for transverse isotropy when both shear 
coefficients depend just on the coordinates of the normal isotropy plane. It is assumed that 
the mass forces are potential. 

Decomposition of the elasticity theory equations of an isotropic body by extraction of 
the normal rotation deformation /l/ was later extended to the case of a transversely- 
isotropic body /2/. Such a separation was performed for an isotropic body /3/ and for a 
transversely-isotropic body /4/* (*See also Puro, A.E., Some Exact Particular Solutions of 
the Statics Equations of an Inhomogeneous Medium, Candidate Dissertation, Tallinn, 1975.) for 
a one-dimensional inhomogeneity when the elasticity coefficients depend on one Cartesian 
coordinate. 

1. A transversely-isotropic body is referred to a rectangular Cartesian system of 
coordinates and the s-axis is perpendicular to the plane of body isotropy. 

We consider both shear coefficients c~= c-~.(c~~~c~~)/~= G in the generalized Hooke's law 

%x = Cll%I. + Cmeyy + C&z*, Ql = (Cl1 - C1*)Erar 

% = Cl8% + Cheyy + cl*% 0.X, = 2C44%: 
o,, = (J = cm (erx + erg,) + CSIL%2~ oyz = 2C&yr 

differential functions of just the z coordinate while the remaining elasticity coefficients 
cik are functions of three coordinates. It is also assumed that the mass force vector M and 
the displacement vector u are decomposed into potential and solenoidal components in the plane 
of isotropy and expressed, respectively, in terms of the potentials 
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M=(X+g)i+($f-$)j+gk 

,BF 
u= ,-1.z)i+($-g) j+wk ( 

Substituting M and u into the equilibrium equation divo+M-0, we obtain a system of 
that are SeDarated into an equation for the normal rotation potential N (a three equations 

solution of the second kind; 

(1.1) 

and a system of 

The method 

two connected equations (a solution of the first kind) in Q and F 

~[43(m+~)]+~ll~+~,lA+P=-~ 

A+[hr(w+~!]+~[cs.~+c~~A+F]=-~ 

(A+F = (a'/%?'+ c?'/@/~) F) 

(1.3) 

(1.3) 

of separating the equations is identical to that mentioned earlier /2, 3/ 
.~~ 

(see also the dissertation mentioned in the footnote) and, consequently, will not be presented 
here. 

An analogous separation of the equations is possible in the dynamic case if the density 
of the medium is a function of just the z coordinate. 

We will present the derivation of other kinds of resolving equations of solutions of the 
first kind. To do this we introduce the function L(z, y, z) by setting 

w = -(caLiaz + wiaz) (1.4) 
Clz; ye c,,auvaz I cmA+F == -A+L ~ x (1.5) 

Eq.(1.3) is satisfied identically. Substituting the relationship (1.4) into (1.2) and 
(1.51, we eliminate w from these equations. We will write the system obtained for the resolv- 
ing functions in the form 

a=Fl&= + (c - b) azLla9 -I c’aLiaz -I- oAJ = a~ - Ry (1.6) 

A+F - da=Llaz= + bA,L : Ox - dv (1.7) 

(PII = d = CWP> PI, = --b = cnip, h.9 = C1,IP! P = CllCaB - Cl?) 

For brevity here, the elastic constants presented /4/ Bix are denoted in the manner 
mentioned above. 

System (1.6) and (1.7) is mixed in the sense that the stress function L and the dis- 
placement potential F are not known. 

We will examine the case of the homoseneous equations V= x=0 (no mass forces) in 

greater detail. The stress components of solutions of the first kind are expressed, when 
(1.6) and (1.7) are taken into account, by the formulas 

It follows 
function tensor 
(1.6) and (1.7) 

0, = a2Llaz= - aWay=, myv = a2LiaS - aWaz=, ozz = A+L (1.8) 

0 ly = awaray, crz = -aV,iasaz. oyi = -aWaya (a, = l[cl, - clzl F) 

from relations (1.8) /5/ that L and Q are diagonal elements of the stress 
$ whereas its remaining elements equal zero: I#= diag{L, L,-0,). Therefore, 
can be obtained from the compatibility equations for the stress tensor ex- 

pressed by means of (1.8). We obtain the equation in L by eliminating F from (1.6) and (1.7) 

(I.3 

Let us examine the connection of the functions L, F with the general solutions obtained 
earlier. 

If b and d depend only on z we find from (1.7) by the substitution L- A+L, 

F = d2L,lBz= - bA,L, 

Substituting F into (1.6), we arrive at (1.9) for Lo /4, 5/ and we find w from (1.4) 

w = albA,L, - da2L,la9]la~ - cdA+l.,iai 
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If d and b are independent of z while c(z)= cl+cPz is a linear function in Z, then 
by the substitution L = a2L+lW we find P from (1.6) 

F = (b - c) PL+/a# + c’aL+lh - aA+L+ 

Substituting F into (1.7), we again arrive at (1.9) for L,, where 

U, = [a A, - ba2/W]8L/8n 

The displacement components in the last two cases are expressed by means of third-order 
derivatives of the resolving functions if the elk are independent of Z, then the order of 

the derivatives can be reduced to the second. 
In the case, system (1.6) and (1.7) can be solved for @LidzZ, A+L 

$i= [bO &+A++ A+L=[&'$(bO-c")A+F] (1.10) 

(a0 = Clll~, bQ = -c&. do = -c&, 6 = --p T, r = 1 + c&c) 

Defining F = aL,ih and substituting F into the first relationship of 

g= [bo !+‘A+L*] 

We obtain the resolving equation for L, by differentiating the second relationship of 
(1.10) with respect to z and substituting F and aLI& into this expression. Outwardly it 

is identical with (1.9) except that all the coefficients a, b, c, d are replaced by appropriate 
coefficients with zero subscript and there is no last component (in this case the coefficient 
c is considered constant). The displacement vector components equal, respectively 

(l.lO), we find 

Lekhnitskii first obtained such a representation for a homogeneous medium in the axially 
symmetric case and it was generalized in /2/. 

We will write the system of equations in symmetric form by using the substitution F= F,- 
CL/2 

Here 

2&F,, = --l/i?AIL f CL, 2A,F,, = @iAaL + c”L (l.il) 

A,F, = (IQA, + aalaS) F,, i = i, 2 

% = [(c - Ib) f dBl/(2d), dm’ - (c - 2b) mz + a = 0, D = (c - 26)s - 4ad 

where %,2 are roots of the characteristic equation and D is the discriminant of this 
equation. 

For c"= 0 and D = const the general solution can be expressed in terms of the sum of 
two functions L1, L, that, respectively, satisfy the equations A,Li= 0. Indeed, the ex- 
pression 

L (z, Y, 2) = ‘L&z7 + L,/VE F, (5, Y. 2) = L1/2 - L,/2 

satisfies (1.11). 
The representation obtained for the general solution is identical, apart from constants, 

with the known solution /6/ used in the case of a homogeneous medium. Hence, depending on 
the form of the inhomgeneity, the resolving equations of the first kind at more conveniently 
utilized in some form but in any case (1.9) is actually solved. 

2. We will present the fundamental relationships for the case when the roots of the 
characteristic equation mla=mta=msa are degenerate. From the condition D=O we obtain the 
connection between the coefficients c,$= G-2c,, where mo= = )/c&ss == T/;;i;. 

Since Eqs.(1.12) are identical in this case, we will take (1.7) as the second resolving 
equation 

2A,F, = c”L, A+F,, = dA,L (2.1) 

(A$ = (m,*A+ + P/M)F,,) 

If the coefficients d,m, depend only on z, then by introducing the function L = A+L,, 

F, = dA,L, we satisfy the second equation in (2.1) while the first equation in (2.1) determines 
the resolving function L, 

2A, (dA,L,) - c”A+L, = 0 (2.2) 

If c"f 0, then L is found from the first equation in (2.1) 

L = 2 (c")-'A,F, (2.3) 
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while the second equation in (2.1) becomes a resolving equation for F. 

ZdA,[(c")-'AJ,] - A+F, = 0 (2.4) 

The equations of an isotropic medium are obtained as a special case from the formulas 
presented above for c ,1 = cJa -= h ..j- 2~ the remaining coefficients take the values nl,,= : I. if f 

(1 - V). c-1 = ($1 I’. 

3. We will examine certain inhomogeneity laws for which the solutions of the resolving 
Eq.(1.9) can be obtained explicitly. 

Under the condition c’= 0, while the coefficients a. (c - 2b), d are proportional to 
eh-p (a~ + Br/ -+ 'i") (1.9) reduces to an equation with constant coefficients whose solution can 
be obtained explicitly. 

If CI1 c,, (-)1,1%, Y). c33 c33 (2) ?I2 (5. Y), while the remaining coefficients depend only on z the 
variables in (1.9) are separated partially by introducing I. (.z. !/, 2) -m I> 13. s) 1' (1.. y. s). We obtain 
a two-dimensional Helmholtz equation for $(z. y,s) 

A+q (s. y, s) t A3 (s, Y) + (I, Y, sl 0 (3.1) 

and an ordinary differential equation for I. (2, 8) 

(3.2) 

For complete separation of the variables it is necessary that the variables in (3.1) be 
separated. To investigate this question, we will write (3.1) in a curvilinear orthogonal 
system of coordinates CL, ,B 

(3.3) 

Here < _z z :. iy is an analytic function of the complex variable s = a~@. 
The condition for separation of variables is the possibility of the representation /7/ 

1 d:.'dy 1 %G (a. p) 1l,l (a) -:- 11, (B) (3 4) 

In this case the solution (3.3) is represented in the form \1' (a, B. s) $1 ('1, p. k) g, (BY s. k) 
where each of the components satisfies the equation (k is a constant) 

I . 
$I,, -1 (s%,,, + k*) $1.2 0 (3 5) 

Let us examine the case when (3.5) reduces to a known equation. The replacement $1 (a) = 
J/ (/):I -? converts (3.5) into normal form /a/ (t(a) is the new variable) 

d*Y (f)!df* -I~ 1 1’ 1 -* [s2no (I) 7 k* - D (1’, a)/21 y (1) = 0 (3.6, 

D (L’, a) -_:! (p)‘!‘dz (t,)-‘i’,dl” 

(I) (t',a)is the Schwartz derivative). Selecting the known equations in normal form, we determine 

t(a) and fh, (4 from (3.6), for which (3.5) reduce to (3.6). In turn, from the known )I0 (a). )il (B) 
and 5 (V) the n* (a, 0) is found from (3.4) for which the solutions of (3.3) are expressed 
in terms of the solution of the equations chosen earlier. 

Thus, (3.6) reduces to the equation y"-I- m*y = 0 for t= a,n,(u)= nu,sz~~O +kZ=m2 to the 
Bessel equation y"+ [h +(I/& - ~Z)/t*j y=O for t = a i- c, ,L” (a) j- ,t,/a* and for t exp (ac t c,i, n,, (a) 
n, 1 RI exp (Zac). 

The case when (3.6) reduces to the Whittaker equation, the hypergeometric equation, can 
be mentioned. 

Application of this method to the solution of analogous problems of electrodynamics is 
examined in greater detail in /?/. 

We will now examine those inhomogeneity laws for which an explicit solution can be 
obtained from (3.2). 

For an inhomogeneity of the form a (z) = ain, b (z) = bP+z, c (2) = CZ~+*, d (z) = de+’ Eq.(3.2) goes 
over into the Euler equation where C,, =_ z -("+d) , cga zz 2-n. c,a z z -(n-z) The solution is expressed 
in terms of power functions 

In particular, for n =~ -2 the roots are 
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(3.7) 

For an inhomogeneity of the form a (2) = (az + a,) e=, b (z) = (ba + b,) ear. c (2)~ (~2 i Co) em: d (z) = 

(dz + d,) eaz (3.2) is the Laplace equation /8/. Its solution can be represented in the form of 
a definite integral 

L (z, S) = L (8)s e*$ (t) dt 

where the integration limits are determined by a well-known method /0/. We obtain a first- 
order equation for v(t). Thus for a,, = b, = cad, = 0 the solution is 

'p (t) = II (t - @I, t< = --a/2 f (8% (c - 26) + (PD - 4s*ccb)“*)“1 

where a1 are coefficients obtained during integration. 
In particular, for a= 0 all the at = --1/Z and 'p (t) = [(P - ~*m~)(t* - ~'rn~)]-"'. 

Another special case of this equation, when all the coefficients cik are exponential 

functions of z, has already been examined /4/. 
We also note that (1.9), meaning also its solution, is invariant under the substitution 

c1 (z) = c (z) + 2 (cO + cln), b, (z) = b (z) + (co + ~2). This enables us, using the above-mentioned substi- 
tution,toobtain new solutions by starting from known solutions. 

In the case of degeneration of the roots of the characteristic equation ln12 = ma= = ,o= 

new inhomogeneity laws can be added to those considered for which the solution can be obtained 
explicitly. 

For c'=O the solution can be found in succession, first F, from (2.1) and then L, 
from (2.2). 

For m, = const the substitution I>= mOzl. y = m,y, reduces system (2.1) and (2.2) to an 
equation of an isotropic medium with variables 2, 31, Y,, where the parameters of the medium 
are p = c-l, c (1 - Y)= m,*d. Consequently, all the solutions found earlier for an isotropic 
medium /5, 9/ will be valid even in this case. 

We will show that the method /9, lo/ used earlier enables us to find exact solutions 
with variable m,. We will use system (1.2) and (1.3). We will seek the solution in the form 

F = F (2, s) s'* (z, Y, z), w = UJ (6 s)* (5, Y,S) 

where $(z,y,~) satisfies (3.1). 
We obtain a system of ordinary differential equations for F(z,s) and w (2, s) which we 

write in matrix form (E is the unit matrix) 

GE_ I - 
The matrix Eq.(3.8) is factorized 

(3.8) 

(3.9) 

if the matrix B satisfies the Riccati equation B’-GB+B~= H. In this case the fundamental 
system of solutions of (3.8) ~,$~~$~-l$,dz is expressed in terms of the fundamental solutions 

%. Qa of the corresponding equations. Taking into account that G = G, + G,s and H = H,s+ H,sB 
we will seek the solution in the form B=B1s+Bo (the expansion in reciprocal powers of s is 
truncated). As in the case of the isotropic medium /9/, we obtain the system 

G>B, -t B,= = Hp, 

If the solution B, of the first 
are identical 

B&, - (G, -.-B,) Bo = fI> + G&, 

B,’ - G,B, + B,= = 0 

equation is selected such that the roots B, and G--B~ 

then the second equation reduces to the system (brk are the elements of the matrix B,) 

crab,, + cssb,l = 0, cub11 + m,‘c,,b,, = -2% (3.10) 

The third equation has the solution B,-‘= (K+JM-lds)M expressed in terms of a matrix 
of arbitrary constants K and the diagonal matrix M = diag(cu,cs31. 

It follows from the first equation in (3.10) that K is an antisymmetric matrix. The 
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second equation governs the connection between cll.cs3 and c44 for whcih the mentioned sol- 
ution holds (dotK=A, Ki, are elements of the matrix X) 

,nu'J = [k,,?. + 2~44’ (A + h-,,cc + k,,fl + *~)li(ku + P) 

a = 1 cgdz, b =z j c;jdz 

Therefore, it can be concluded that 1) for Q= const we have the solution D,= 0 (all 
the coefficients except CM are arbitrary functions), 2) the case when b,, = -2cuO’lc4~. the 
rest of the cik are arbitrary functions and 3) the case when b,, = c,-j I&, + al-’ the remaining 

b IL = 0, corresponds to the dependence cs3= .zVr, here 3: = 2c44u'/m,z. 

Other simple solutions B, can be also be extracted. The factorization obtained enables 
us to find explicit solutions of (3.8) as in the case of an isotropic medium. 

We will examine this in an example of the dependence 012-=--2'/~- ~;i[[k,,+uj-' (the third 
case) /lo/. 

The solution Qb(F,w) is found from the equation (Edidz-B)$+= 0 that reduces to the 
system 

I*" = St"; I"' = m,,~sIL. - r'wll: 

Eliminating W we obtain F" + s'F'l;c - nM1' = 0. The substitution I;= C&F reduces the 
equation to the normal form 

Cc" - Imo2s2 - D (l/s. z)iZ] Ip = 0 (3.11) 

The solution rp = ~(L)(&'-'!z is related to the solution 11(L) of the equation q"+ P(C)= 0 

(here i (4. p (5) = p, (5) 9 P, (i)) for 

--s*m"z (2)(2,')2 = P, (6) (3.12) 

[$$A-P.(L)] [$&-j-j’*=0 (3.13) 

By specifying the function p (0 corresponding to the known equations (Bessel or 
Whittaker) and representing it in the form of the sum p, (5),p2(5) we find ms (2) and cU for 

which the solutions of (3.11) are expressed in terms of the solution of the equation selected 
in advance /lo/. 

Substituting PI(L) into (3.12) and solving this equation we find 5 (2) as a function 
of % (2) and P1(5) and we determine the appropriate value of CM(Z) from (3.13). 

Thus, the solution is expressed in terms of the exponential function for Pi= -4 

5 = j m, (2) dz + c, P, (E) = -9, CM = (A& + ~~e-~c)l + A, 

To find the fundamental system of equations it is also necessary to find qC(~p,,qp,) from 
system (3.9). It can be shown that system (3.9) reduces to (3.11) for or = v2c&fZ i.e. , $a 
and & are actually found from one equation of (3.11). 

As an illustration we will consider the Boussinesq problem for cd1 and Cl3 constant, 
Cl1 (2) = wz and Cso (2) = c&. We will seek the solution in the space of Hankel transforms 

L (r, z) = f L (I, J) I, (r, s) ds; 

m 

F. (r, n) = 5 F, (8, s) I, (r, s) ds. 

cl 0 

The boundary conditions o,, = oUz = 0; (rzz = --p6 ($ (2x+* on the half-space surface are ex- 
pressed for z=z,, by means of L (1.8) and equal L(z,,s)=P/(&~),L (z, s) = 0 respectively, in 
the space of the Hankel transform. Here P is the concentrated force and s(r) is the delta- 

function. 
For the inhomogeneity under consideration, (3.2) reduces to Euler's equation (n = -2). 

Taking account of the conditions at infinity L(z,s)=L~(~)&* f&(s)&* the solution of this 
equation is determined by the roots of (3.7). 

Substituting L(z,s) into the boundary conditions, we determine L, (s),& (s) and respect- 
ively 

Since c, D are constants for the inhomogeneity law under consideration, we find from 
(1.11) 



861 

The problem is completely defined by the two functions L (2,s) and F, (z, s). Thus, we 

find from (1.4) 

In evaluating the integral it must be taken into account that w (20. s) tends to a con- 

stant as s-m. i.e., as r-0 

1. 

2. 

3. 
4. 

5. 

6. 
7. 

8. 
9. 

(c (Z”, 7) 

GUTMAN S.G., The general solution of the elasticity theory problem in generalized cylindri- 
cal coordinates, Izv. Vsesoyuz. Nach.-Issled., Inst. Gidrotekhnika 37, 1948. 
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